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Abstract

Recent progress in defining the physical, orbital, and chemical properties of the Earth-crossing
asteroid and comet population has bean integrated into an elaborate Monte Cado model of the
fluxes of bodies In the inner Solar System. This model is of use In projecting flight opportunities to
as-yet undiscovered near-Earth objects and in assessing the impact hazard to life on Earth and the
evolutionary consequences of impacts on the other terrestrial planets. We also have made further
progress in defining desirable transportation system architectures for the use of non-terrestrial
volatiles and metals, Includingthe delivery of propellants to near-Earth space for fuelling of SEI-type
expeditions, the construction and resupply of Sotar Power Satellite constellations in vadous Earth
orbits (including GEO and Highly Eccentric Earth Orbit (HEEO)), and retrieval of 3He for use as a
clean fusion fuel on Earth. These studies suggest a greater future role for SERC in the exploration
of space energy sources to meat Earth's 21st-century energy requirements. Laboratory studies of
volatilization and deposition of ferrous metal alloys have demonstrated deposition of strong iron
films from carbonyl chemical vapor deposition (CVD), showing the crucial role of additive gases in
governing the CVD process, and pointing the way to specific experiments on extraction and
deposition of ferrous metals from nonterrestrial materials.
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General Research Proqram

This project includes research into three basic areas: prospects for accelerating the development

of non-terrestrial sources of energy for Earth using non-terrestrial propellants and structural

materials; transportation system studies on the most efficient return of non-terrestrial materials to

near-Earth space for use in large-scale future space activities; and carbonyl processing of

nonterrestrial ferrous native metals. In addition, this project includes oversight over SERC science

program activities and travel for the purposes of developing research collaborations at other

research centers and in Industry. These activities are treated separately below.

Enerav for Earth from SPace

Over the past two years we have carded out preliminary studies of two different schemes for

providing energy for Earth from space. These studies suggest that the energy needs of Earth in the

21st century can plausibly be met economically, and with diminished environmental impact, by

either building So/ar Power Satellites from asteroidal materials in Highly Eccentric Earth Orbit

(HEEO) or by returning 3He from the atmosphere of Uranus for use as a clean fusion fuel in reaction

with terrestrial deuterium.

HEEO (in our reference example, 6000 to 400000 km altitude) has several considerable advantages

relative to GEO as a site for construction of SPS constellations: 1) It is more accessible than GEO

via chemical launch from Earth, the Moon, and near-Earth asteroids. 2) From HEEO there is much

easier access to Earth than from GEO (a delta V of under 100 m/s vs. 1461 m/s for return to

atmospheric entry), easier access to the Moon than from GEO (2900 vs. 3500 m/s), and easier

access to the typical NEA than from GEO (3000 vs. 5400 m/s). 3) The radiation hazard in HEEO

is no worse than in GEO, and the cost of providing shielding from any source will always be less

in HEEO. 4) The high MPBRs available for return of asteroidal material suggested a careful look at

a variety of boot-strapping schemes for return of large masses of asteroidal material to HEEO, using

propellants derived from asteroids.

Alternatively, commercial production of electric power from fusion of 3He with deuterium may be

shown to be technically feasible. If so, then: 5) the preferred source for the 3He is the atmosphere

of Uranus, 6) 3He return from Uranus requires two crucial items of new technology: a nuclear rocket

stage using hydrogen as the working fluid and a "hot air balloon" filled with warm hydrogen to

suspend the processing package in the uranian atmosphere. 7) Processing of the ambient

atmosphere to separate helium from hydrogen and methane and to separate the isotopes of helium
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can be done using a small subset of the equipment required to extract 3He from lunar regolith.

Among the features of the lunar scheme that may be omitted entirely are a) the need to mine 10"8

tonnes of dirt per tonne of 3He, b) the need to beneficiate and size minerals, c) the energy needed

to heat 10"8 t of regolith to roughly 1000oC, d) the need for high process temperatures, e) the need

to design around a two-week hot day and a two-week cold night, which creates severe

temperature-cycling stresses and Interrupts continuous processes, and f) the need to handle a wide

range of reactive gases along with the 3He.

Tr'dnsDortation System Architectures

Motivated In large part by the study of possible locations for SPS constellations summarized above,

we have looked at a variety of bootstrapping schemes for return of nonterrestrial propel|ants and

metals to near-Earth space. These studies, begun last year, originally Involved space stations in

highly eccentric Earth orbit as fuel-manufacture sites, near-Earth asteroids as sources of water,_and

both solar thermal and nuclear thermal "steam rockets" as the means_' of transport. Single-trip

asteroid missions from HEEO were so promisingthat we were led to consider using the spacecraft

for multiple round trips. Constraining the spacecraft specific impulse to 180 to 220 seconds (cool

thrust chambers; very long operational lifetimes) and allowing a spacecraft operational life of 10 to

15 years (three round trips to a carbonaceous NEA by each spacecraft) we have demonstrated that

real multiple-mission sequences to known near-Earth asteroids of probable C-type composition can

provide mass payback ratios of about 100:1. Table 1 presents the model mass-payback ratio

calculated for three round trips to a "typical good" NEA (a composite of the dozen best-known

NEAs): case A3 inthe Table assumes all delta V maneuvers above LEO, including capture into Earth

orbit, are carried out using asteroid-derived water as the propellant. Case A4 uses, instead of

propulsive capture, an asteroid-derived aerobrake. Table 2 shows that, for the same target asteroid,

use of asteroidal propellant returned on the firstmission to fuel an "armada" of retrieval vehicles can

raise the mass payback to over 100:1. Table 3 documents a series of missions by a single

spacecraft to the most accessible known C-type asteroid, 1977 VA. If the "armada" scheme is used

from a base in HEEO, MPBRs over 50 can be achieved, as shown in Table 4. Finally, If the initial

fueling of the "armada" is carried out in LEO, with all subsequent operations based in HEEO, the

MPBR rises to over 80.

These logistic studies, In calling attention to several very attractive features of missions to retrieve

materials from near-Earth asteroids, have served to motivate a more careful look at the mass

budget, logistic systems design, and processing equipment requirements for realization of schemes
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Table 1

Mass Payback Ratios

(three round trips; typical "good" asteroid)

Mission Return to LEO Return to GEO Return to HEEO

E1 1.000 0.334 0.41B

A3 3.7 7.8 16.6

A5 24.3" 15.9"" 24.9"
m w

* Assuming an aerobrake mass fraction of 0.2 (moderate energy dissipation)

** Assuming an aerobrake mass fraction of 0.3 (high energy dissipation)

Table 2

Mass Payback Ratios

(one trip for fuel; typical "good" asteroid; three-trip "Armada')

(all water returned on first trip used as fuel for new vehicles)

Mission Return to LEO Return to GEO Return to HEEO

El 1.000 0.334 0.418

A3 5.9 10.8 35.2
A5 92.0'' 24.2"" 115.0"

* Assuming an aerobrake mass fraction of 0.2 (moderate energy dissipation)

** Assuming an aerobrake mass fraction of 0.3 (high energy dissipation)
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Table 3

Mass Payback Ratios
(four round trips for fuel to 1977 VA)

Earth Launch Date dV outbound dV inbound Earth Arrival MPBR

Nov 1990 5712 473 Nov 1995 7.0 _-

Nov 1995 2367 316 Nov 2000 14.

Nov 2000 2322 1675 Nov 2005 21.

Nov 2005 2566 776 Nov 2005 28.

This model illustrates real multiple round trips to a single typical good asteroid,

using trajectories from Lau and Hulkower (1985).

Original departure is from LEO, and all returns to Earth use an asteroid-derived
aerobrake with a mass fraction of 0.2 (moderate E dissipation) to return to HEED.

Outbound propulsion for the first trip is H/O lifted from Earth; on subsequent trips
it is H/O made by electrolysis of asteroidal water. Inbound propulsion is by solar

thermal steam engine.
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Table 4

Mass Payback Ratios
(one trip for fuel to 1977 VA; three-trip "Armada')

(all water returned on first trip used as fuel for new vehicles)

Earth Number of dV out dV in Earth Water Mass MPBR

Launch ve_icles m/s m/s Arrival in HEEO (t)

Nov 1990 i 5712 473 Nov 1996 100 7.0

Nov 1995 5Z 2357 316 Nov 2000 5200 17.6

Nov 2000 52 2322 1675 Nov 2006 10300 35.0

Nov 2005 51 2566 776 Nov 2010 15400 52.3

This model illustrates real multiple round trips to a single typical good asteroid,

using trajectories from Lau and Hulkower (1955). All water returned by the first
mission Is used to fuel an "Armada" of vehicles delivered to HEED from Earth. The

lifetime of each vehicle is three missions (15 years).

Original departure is from LED, and all returns to Earth use an asteroid-derived

aerobrake with a mass fraction of 0.2 (moderate E dissipation) to return to HEEO.
Outbound propulsion for the first trip is H/O lifted from Earth; on subsequent trips
it is H/O made by electrolysis of asteroidal water. Inbound propulsion Is by solar

thermal steam engine.
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to use propellants and met_!_derived from NEAs. In the 199_ budget year we shall be

applying the Figure-of-Merit (FoM) software developed at SERC by Ramohalli and his students to

the assessment of the overall desirability of retrieval of asteroiclal material. This will entail joint

support of one engineering graduate student by Ramohalll and Lewis.

Gas_ous Carbonvl Process

One of the most Important results adslng in this project over the past year and a half has been the

result of a close and fruitful interaction with a consultant, William C. Jenkin, who is the leading

developer of carbonyl chemical vapor deposition (CVD) technology In the world. We have been

working with him for over a year on the problem of how best to handle iron carbonyl extracted from

non-terrestrial ferrous metal alloys. Iron is the dominant constituent (40 to 93%) of native metals

found in meteorites and In asteroidal metal fragments found in the lunar regolith. It is also the

dominant metal in the metallic cathode deposits produced by electrolysis of molten lunar silicates,

and is formed in large quantities and with a rather high degree of purity (99%) during the reduction

of lunar ilmenite. Carbonyl extraction of iron from native Fe-Ni alloy has been demonstrated on a

small scale in our own laboratory, butthe disposition of the resulting iron pentacarbonyl vapor and

liquid is unclear. Iron carbonyl CVD is never used for manufacture of strong metal components

because of the tendency to precipitate a very fine-grained powder during thermal decomposition.

This Iron powder Is of exceptional purity and of great metallurgical interest; indeed, it is the source

of almost all the analytical-grade iron Inthe world market. However, the iron powder was something

of a disappointment compared to the results of nickel tetracarbonyl CVD, which can quickly fill

molds with bright, full-density, very strong nickel. Under similar circumstances, iron carbonyl leaves

a mechanically weak, black deposit with a high carbon content. Jenkin, however, brought to our

attention some unpublished laboratory experiments in which ammonia is added to the iron carbonyl

to suppress carbon codeposition during production of analytical-grade Iron powder. He suggested

that we examine the effects of addition of ammonia during attempts to plate out tough iron films.

Also, based on his own eadier experience, he suggested a similar experiment with water vapor as

an additive. (All runs have added hydrogen and carbon dioxide).

The experiments with ammonia last year turned out promlsing results: two runs at 210 and 230°C

with both ammonia and carbon dioxide added both produced bright, tough films, but unfortunately

both developed stress cracks and partially peeled off the mandrel surface. But a run with water

vapor, carbon dioxide and no ammonia looked even better, without spalling, and remained

mirror-bright as long as deposition continued, but closer examination of the surface again shows
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Table 5

Mass Payback Ratios
(one trip for rue1 to 19__VA;_t_ree'trtp "Amada')

(All water returned on first trip used ms fuel for nw vehtcles in LEO)

EaCh Humber of
Launch vehtcles

Nov 1990 4

Nov 1995 44

dV out
m/s

5712

5712

dV tn Earth Water Mass MPBR
m/s Arrival LEO HEEO

473 Nov 1995 400 0 7.0

316 Nov 2000 4 4400 29.1

Nov ZOO0 44 2322 1575 Nov 2005 4 7964 54.0

Nov 2005 40 Z566 776 Nov 2010 4 11888 80.3

Thts model illustrates real multtple roundtr|ps to a stngle typtcal good asteroid,
using trajectories from Lau and Hulkower (1985). All water _eturned by the ftrst
mtsston ts used to fuel an "Armada" of vehtcles delivered to LEO f_ Earth. The
lifetta_e of each vehtcle ts three mtsstons (15 years).

Ortgtnal departure ts from LEO and first retu_ is to LEO. All returns to EarLh use
an asteroid-derived aerobrake with a mass fractton of 0.3 (to LEO) or 0.2 (to HEEO).
Outbound propulsion for the ftrst trtp ts H/O 1|fLed from Ea_Lh; on subsequent trtps
it is H/O made by electrolysis of esterotdal water. Znbound propulsion is by solar
thermal steam engine.
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extensive cracking. The literature does not report reactions of ammonia with iron carbonyls to

displace carbon monoxide (as happens with nickel carbonyl), and it is possible that the participation

of ammonia begins with partial decomposition of ammonia and leads to nitriding of the iron surface,

and hence to embrittlement.

Analyses of the metal film deposited without ammonia show about 3.9% oxygen and 1.6% carbon,

nearly the same proportion as in carbon dioxide. Adsorbed and trapped carbon dioxide gas, not

a bizarre alloy, may be responsible for this contamination. Jenkin suggests that deposition at lower

pressures may alleviate this problem.

In general, carbon dioxide helps reduce the carbon content of the deposit, but increases the oxygen

content. Water, at high concentrations, of course also is an important source of oxygen. Hydrogen

suppresses the oxidation of the deposit by carbon dioxide, while helping keep the carbon content
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low. The Impurity then approaches a C:O molar ratio of 1:2.

It seemed reasonable to try a run with only carbon dioxide as the carrier gas. The resulting deposit

was bright, tough, adherent, and had a highdeposition rate-- the best yet! Again, the,,PG,, impurity

had the stoichiometry of carbon dioxide, and may be susceptible to removal by exposure to lower

pressures or higher temperatures. A similar run with a little added hydrogen produced chemically

similar results but had an even higher deposition rate. This year we had hoped to pursue these

leads and begin experiments with mixtures of Iron and nickel carbonyls, but the Akron fire

department shut down Jenkin's laboratory in January 1992. It is reopening within the month, and

we hope to resume experiments soon thereafter.

We are making clear progress toward the goal of direct deposition of Iron with desirable physical

properties. Experiments involving lower pressures, outgasslng at higher temperatures, and

codeposition of iron and nickel are all planned for Jenkin's laboratory. Here at SERC we are

prepared to extend our experiments on carbon monoxide volatilization of ferrous metal alloys of

interest in the space resources arena, including native lunar and asteroidal metals and metallic

byproducts from schemes for lunar oxygen production. These experiments will require the services

of a research staff member with a background in chemical research and experience in carbonyl

handling. Fortunately, Dr. Muralidharan, who has played a major role inthe development of schemes

for platinum-group metal separations under SERC sponsorship, will be available to devote half his

time to this project.
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